Positive solutions of asymptotically linear equations via Pohozaev manifold
نویسندگان
چکیده
منابع مشابه
Asymptotically linear solutions of differential equations via Lyapunov functions
We discuss the existence of solutions with oblique asymptotes to a class of second order nonlinear ordinary differential equations by means of Lyapunov functions. The approach is new in this field and allows for simpler proofs of general results regarding Emden-Fowler like equations.
متن کاملPositive Solutions of Positive Linear Equations
Let B be a real vector lattice and a Banach space under a semimonotonic norm. Suppose T is a linear operator on B which is positive and eventually compact, y is a positive vector, and A is a positive real. It is shown that (XI—TY1y is positive if, and only if, y is annihilated by the absolute value of any generalized eigenvector of T* associated with a strictly positive eigenvalue not less than...
متن کاملAsymptotically Linear Solutions for Some Linear Fractional Differential Equations
and Applied Analysis 3 The first variant of differential operator was used in 13 to study the existence of solutions x t of nonlinear fractional differential equations that obey the restrictions x t −→ 1 when t −→ ∞, x′ ∈ ( L1 ∩ L∞ ) 0, ∞ ,R . 1.5 The second variant of differential operator, see 14 , was employed to prove that, for any real numbers x0, x1, the linear fractional differential equ...
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملOn Asymptotically Periodic Solutions of Linear Discrete Volterra Equations
We show that a class of linear nonconvolution discrete Volterra equations has asymptotically periodic solutions. We also examine an example for which the calculations can be done explicitly. The results are established using theorems on the boundedness and convergence to a finite limit of solutions of linear discrete Volterra equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2014
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2013.09.002